Numerical Investigation of Pileup Process in Metal Microdroplet Deposition Manufacture
نویسندگان
چکیده
This paper presents a systematic numerical investigation of the transient transport phenomenon during the pileup of molten metal droplets on the substrate. The physical mechanisms of the pileup process, including the bulk liquid, capillarity effects at the liquid-solid interface, heat transfer, and solidification, are identified and quantified numerically. The droplet diameter is 100 μm, and the impact velocities are 1–3 m/s. These conditions correspond to Re = O(100), We = O(1). The initial substrate temperature is 350 K. The initial droplet temperature of aluminum alloy molten droplets is 960 K. The numerical models are validated with experiments. The comparison between numerical simulations and experimental findings shows a good agreement. The effects of impacting velocity and relative distances between two successive molten droplets on the end-shapes of impact regime are examined. This investigation is essential to implement effective process control in metal microdroplet deposition manufacture.
منابع مشابه
Experimental, numerical and analytical investigation of the new metal/composite Comeld Joint
Comeld” is a novel technology which can be applied in connecting composites and metals by manufacture of an array of metal pins on the metal part and layup the composite layers on the pins to make an adhesive and mechanical Joint at the same time. The aim of this paper is an experimental, numerical and analytical investigation on strength of comeld joint system and also to calculate the stiffne...
متن کاملHomogeneous dewetting on large-scale microdroplet arrays for solution-processed electronics
Unidirectional dewetting enables the production of large-area thin films with high efficiency at low cost. Herein, we report homogeneous unidirectional dewetting on large-area microdroplet arrays via gravity-induced deformation in droplets combined with alternating lyophilic/lyophobic patterns. This process allows the scaled-up deposition of thin films, including organic semiconductors and tran...
متن کاملEXPERIMENTAL AND NUMERICAL INVESTIGATION ON LASER BENDING PROCESS
Laser bending is an advanced process in sheet metal forming in which a laser heat source is used to shape the metal sheet. In this paper, temperature distribution in a mild steel sheet metal is investigated numerically and experimentally. Laser heat source is applied through curved paths in square sheet metal parts. Finite element (FE) simulation is performed with the ABAQUS/CAE standard softwa...
متن کاملNumerical and Experimental Investigation of Deep Drawing Process in Square Section of Single-Layer and Two-Layer Sheet
Deep drawing of two-layer sheet is a suitable way to achieve product with a desired shape and desired properties in sheet metal forming technology. Control of deep drawing parameter such as thinning is the most important challenge in this process. The most difficult part of this challenge is differences in material properties and geometry of each layer. In this paper, numerical approach has bee...
متن کاملDesign and manufacture a novel tool in the incremental sheet metal forming process and its effects on the process parameters
One of the methods for making prototypes is incremental forming process. In this method, the forming tool, performs a pre-programmed movement by the CNC machine and runs the desired path. This modernization process is used in the automotive, aerospace, military, medical and other industries. One of the most influential parameters in this process is forming tool. This parameter is effective in f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Micromachines
دوره 5 شماره
صفحات -
تاریخ انتشار 2014